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Abstract

The hybrid power system (HPS) is an emerging power generation scheme due to the plenti-

ful availability of renewable energy sources. Renewable energy sources are characterized

as highly intermittent in nature due to meteorological conditions, while the domestic load

also behaves in a quite uncertain manner. In this scenario, to maintain the balance between

generation and load, the development of an intelligent and adaptive control algorithm has

preoccupied power engineers and researchers. This paper proposes a Hermite wavelet

embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of

photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated

NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift

response in a grid-connected hybrid power system. A comprehensive simulation testbed for

a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery

storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed

in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control

paradigm are evaluated through simulation results in a grid-connected hybrid power system

testbed by comparison with a conventional PI (proportional and integral) control system.

The simulation results verify the effectiveness of the proposed control paradigm.

1. Introduction

The global electricity demand is expected to increase 49% from 2007 to 2035 [1]. At present,

most of the electricity demand is met by fossil fuels. These fossil fuels have caused adverse

environmental effects, and their reserves are declining with the passage of time. Moreover, the

rapid increase in electricity demand and scarcity of fossil fuels increase the cost of electricity.

Thus, it is essential to endeavor to decrease greenhouse gas emissions and obtain affordable

long-term sustainable energy sources. Recently, renewable energy has gained much more

attention as an alternative energy. Renewable energy is clean, is sustainable, is economical and

never runs out. The power from renewable energy is at the mercy of meteorological condi-

tions. Thus, any standalone renewable energy source is unable to supply reliable and
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sustainable power. Therefore, multiple renewable and non-renewable power sources are incor-

porated to form a hybrid power system. Currently, in the energy market, hybrid power systems

based on renewable energy have paved an attractive approach to produce electricity [2]. A PV

power based stochastic optimization framework is used to manage the energy of a smart home

with plug-in electric vehicle (PEV) storage [3]. Moreover, to achieve the accuracy, PV power

and home load demand are also forecasted using a radial basis function neural network

(RBF-NN). A wind/PV/fuel cell generation-based HPS is presented for a typical home in the

US Pacific Northwest [4]. A standalone application of HPS contains wind, PV cells, fuel cells

(FC), an electrolyzer and a battery, which are integrated through an AC link bus [5]. To obtain

the maximum advantage from renewable energy, wind and PV cells are considered as primary

sources of the HPS. The FC/electrolyzer and battery are used as a backup system. However, the

stated HPS operates as a standalone system. A PV, FC and ultra-capacitor (UC)-based stand-

alone HPS is used to supply sustained power [6]. During adequate irradiance, the excess power

generated by the PV system is fed to the electrolyzer. Conversely, when the PV system is

unable to meet the load, the FC tries to satisfy the load, but if load power deficiency still exists,

then UC supplies the auxiliary power. However, the standalone application makes the HPS

operate off-grid—i.e., not connected to any distribution grid. Thus, standalone application

limits the scope of the stated HPS. A PV/electrolyzer coupled with a SOFC based on energy

and exergy is developed to supply the electricity to a residential load, but the maximum

obtained efficiencies for energy and exergy are 55.7% and 49%, respectively [7]. In the mutable

environment, to increase the output efficiency of the PV system, a maximum power point

tracking (MPPT) algorithm is required to search the optimal operating voltage and/or current

of the PV system. The nonlinear behavior of the current—voltage curve of the PV system

makes MPPT a more challenging issue. In the literature, various techniques have been pro-

posed depending upon complexity, convergence speed, control, stability and cost. The most

commonly used techniques are perturb and observe (P&O), incremental conductance (IC),

constant voltage (CV) and constant current (CC) algorithms [8], [9], [10], [11]. Among them,

P&O is widely adopted due to its simplicity and easy hardware implementation, but once the

maximum power point is achieved, the system keeps oscillating around this power point.

SOFC is an alternative versatile energy source, because it converts chemical energy into

electrical energy with negligible emissions. However, SOFC presents a challenging control

issue during load following due to its sluggish dynamics, nonlinearity and strict operating con-

straints. A sudden change in load power causes hydrogen starvation in the SOFC, i.e., the par-

tial pressure of oxygen drops significantly, which lowers the cell voltage rapidly and hence

shortens the life of the SOFC. Moreover, this fuel starvation also permanently damages the

SOFC. Thus, an efficient control system is needed to ensure that the SOFC satisfies the

dynamic load with high operating efficiency. Two types of control strategies exist for SOFC.

One is to control the input hydrogen in proportion to the stack current, and the other is to

maintain a constant voltage at the SOFC terminals [12]. In the literature, several control strate-

gies are used for SOFC, which include a multi-loop feedback control, a master control, PID

feedback control and model predictive control, but these techniques are computationally slow,

complex and difficult to implement [13], [14], [15], [16], [17].

Similarly, numerous intelligent and modern soft computing techniques are widely used to

obtain the PV MPPT and swift response of SOFC, which include evolutionary algorithms, arti-

ficial neural network (ANN), fuzzy logic and their hybrids. Evolutionary algorithms (DE, GA,

PSO, etc.) are stochastic processes that are quite efficient to optimize real-valued, nonlinear

and multi-objective problems [18], [19], [20]. However, evolutionary algorithms need more

research and technological development for the appropriate selection of control parameters,

initial values, solution archive and locality of the search space. ANN is a non-parametric and
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nonlinear regression soft computing technique. The learning capability of ANN provides

“implicit knowledge” in the form of hidden neurons [21]. However, in ANN, the selection of

optimal initial values of the weights, centers and spreads of the hidden unit is a crucial issue.

The fuzzy logic control system is robust and somewhat simple to design, because no precise

mathematical model is needed. However, the appropriate selection of the fuzzy inference sys-

tem is quite important for accurate performance of the fuzzy logic control system [22]. How-

ever, the synergy of two paradigms—i.e., ANN and fuzzy logic—offers another prevailing

artificial intelligence technique called NeuroFuzzy. This control scheme has good generaliza-

tion capability, has low complexity and is easy to implement [23]. NeuroFuzzy amalgamates

the explicit knowledge of fuzzy logic with the implicit knowledge of ANN [24]. However, the

inherent drawback of the NeuroFuzzy system is that it not only becomes trapped in local min-

ima of the search space but also has long computational time. Moreover, due to the linear con-

sequent part, the classical NeuroFuzzy network becomes inefficient to handle system

nonlinearities. These inherent issues are mitigated by introducing wavelets into the Neuro-

Fuzzy network. Wavelet inclusion significantly improves the computational speed of the Neu-

roFuzzy network. The wavelet-based network is considered as an optimal approximator,

because it explores a small number of data chunks to achieve precision [25], [26].

However, when a nonlinear system such as the PV system has unknown and uncertain

parameters due to the fluctuating environment, the abovementioned control systems are no lon-

ger applicable. The adaptive control paradigm is suitable to sustain the reliable performance of a

nonlinear system in real time even in the occurrence of unknown and uncertain variation [27].

There are two different classes of adaptive control: direct and indirect [28]. A direct adaptive

control system directly updates the controller parameters without involving the explicit identifi-

cation of the unknown plant. However, direct adaptive control fails to capture the instantaneous

dynamics of the nonlinear system [29], [30], [31]. The indirect adaptive control (or self-tuning

regulator) is more appropriate to work with a fluctuating environment, because it adaptively

identifies the model of the plant used to calculate the controller parameters [32], [33], [34].

To address all the afore mentioned hitches, an efficient Hermite wavelet embedded Neuro-

Fuzzy indirect adaptive MPPT control scheme for PV systems and an effective Hermite wave-

let incorporated NeuroFuzzy indirect adaptive control scheme for SOFC systems integrated

with HPS is proposed. In the stated HPS, tracking the maximum power point (MPP) for the

PV system and obtaining the swift response of the SOFC are quite perplexing issues, because

this system is greatly characterized by nonlinearity. The nonlinearity arises due to the erratic

load, dynamic solar radiation and inconsistent temperature.

Given the above interpretation, it is observed that the proposed adaptive control paradigm

possesses the following characteristics:

• The Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT control of PV is char-

acterized by nonlinearity, which operates on the instantaneously captured nonlinear dynam-

ics of the system.

• The Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of SOFC is embod-

ied to respond swiftly to the nonlinear identified dynamics of the system due of sudden load

changes.

• The Hermite wavelet has strong identification capability, which is exploited by the adaptive

controllers for PV maximum power point tracking and SOFC output power control.

• The NeuroFuzzy algorithm is characterized by “explicit knowledge” by virtue of fuzzy logic

and “implicit knowledge” by virtue of the neural network, which makes the adaptive control

paradigm transparent and evolvable.
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The rest of the paper is organized in six main sections. Section 2 presents the mathematical

modeling of the proposed hybrid power system. Section 3 gives the detailed mathematical

description of the proposed control strategies. Simulation results are discussed in section 4.

Section 5 concludes the outcomes of this research work.

2. System overview and model description

The configuration of the stated HPS is shown in Fig 1, which consists of wind turbine, PV

cells, SOFC, electrolyzer, battery, SC, MT and residential load connected to the utility grid.

Two buses are connected through the main inverter in the suggested HPS—i.e., DC bus and

AC bus. HPS contains multiple power generation sources to compensate for the components’

respective strengths and weaknesses. A permanent magnet synchronous generator (PMSG)-

based wind turbine is connected to the DC bus via a rectifier. The PV system is connected to

the DC bus via a boost converter, which boosts the PV output voltage to the DC bus voltage.

The electrolyzer utilizes surplus power to produce the hydrogen, which is used by the SOFC,

so the electrolyzer acts as an energy buffer. The battery is used as a backup in the HPS and is

connected to the DC bus via a bidirectional buck/boost converter. The battery is quite efficient

when low and steady power levels are needed. The SC is also used as a backup source and is

connected to the DC bus via a bidirectional buck/boost converter. SC can process several

Fig 1. Hybrid power system.

https://doi.org/10.1371/journal.pone.0173966.g001
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hundred thousand charge/discharge cycles compared to only a few thousand charge/discharge

cycles for the battery. The MT is operated as a standby source in HPS, which is connected to

the AC bus through back-to-back AC/DC and then DC/AC converters.

2.1 Mathematical modeling of hybrid power system components

2.1.1 Wind generation system. The PMSG-based wind generation system is shown in

Fig 2. The wind turbine model is shown in Fig 3. The wind turbine produces mechanical

energy, which is used to run a PMSG to obtain the electrical energy [35]. The output power

captured by the wind turbine is given as

Pm ¼ cpðl; bÞ
rA
2
v3 ð1Þ

where Pm is the mechanical output power, cp is the performance coefficient, ρ is the air density

(kg/m3), A is the swept area of blades, v is the wind speed, λ is the tip speed ratio (TSR), and β
is the blade pitch angle. TSR is the ratio between the linear speed of the blade tips and the rota-

tional speed of the turbine and can be calculated as

l ¼
omR
v

ð2Þ

where R is rotor radius, and ωm is the mechanical speed of the generator. The performance

Fig 2. Wind generation system with PMSG.

https://doi.org/10.1371/journal.pone.0173966.g002

Fig 3. Simulink model wind turbine.

https://doi.org/10.1371/journal.pone.0173966.g003
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coefficient is the nonlinear function of the TSR and blade pitch angle, which determines the

power captured efficiency of the turbine and can be measured as follows:

cpðl; bÞ ¼ c1ðc2=li � c3b � c4Þe
� c5=li þ c6l ð3Þ

with

1

li
¼

1

lþ 0:08b
�

0:035

b
3
þ 1

ð4Þ

where the coefficients are c1 = 0.5176, c2 = 116, c3 = 0.4, c4 = 5, c5 = 21 and c6 = 0.0068. The

maximum value of cp(λ, β) is obtained at β = 0˚ and λ = 8.1. The electrical torque produced by

the PMSG rotor is calculated as

Te ¼
3

2

� �
p
2

� �
½ðLd � LqÞiqid � lmiq� ð5Þ

where Te is the electrical torque, p is the number of poles, Ld is the inductance of the d-axis, Lq
is the inductance of the q-axis, id is the current produced by the d-axis, iq is the current pro-

duced by the q-axis, and λm is the amplitude of flux linkages. The important parameters of the

wind turbine are listed in Table 1.

2.1.2 Photovoltaic array. The PV cell voltage and current vary with changing solar radia-

tion and atmospheric temperature. The PV array current can be calculated as follows:

Ipv ¼ Ilight � Id �
Vd
Rshunt

ð6Þ

where Ipv is the PV array generated current, Ilight is the incident light current, Id is the diode

current, Vd is the diode voltage, and Rshunt is the shunt resistance, which represents the leakage

current. The voltage of the PV array is calculated as

Vpv ¼ ns
a tT
q

� �

ln
Is � Ipv þ np

np~I

( )

�
ns
np
IpvR ð7Þ

where Vpv is the PV array voltage, ns is the number of series-connected cells, np is the number

of parallel connected cells, T is the cell temperature, α is the temperature coefficient, τ is Boltz-

mann’s constant, q is the charge of an electron, Is is the short-circuit current, ~I is the diode sat-

uration current, and R is a series-connected resistance. The Simulink model of the PV array is

shown in Fig 4. All parameters of the PV array are given in Table 2.

2.1.3 Solid oxide fuel cell. SOFC is an electrochemical conversion source that directly

generates electricity by oxidizing the fuel. The fuel most commonly used by SOFC is hydrogen.

Table 1. Parameters of wind turbine.

Wind turbine

Type nED-100

Base wind speed 10 m/s

Rotor speed 33–67 rpm

Drive train 2-mass model

Pitch angle 0˚

Rated power 100 kW

https://doi.org/10.1371/journal.pone.0173966.t001
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The molar flow of hydrogen is calculated as

mref
H2
¼

nsIsofc
2F

� �

¼ 2kIsofc ð8Þ

wheremref
H2

is the molar flow of hydrogen, ns is the number of series cells, Isofc is the SOFC cur-

rent, F is Faraday’s constant, and k is constant. The output voltage of SOFC is given as

Vsofc ¼ VN � VA � VO � VC ð9Þ

where Vsofc is the SOFC output voltage, VN is the Nernst potential, VA is the activation polari-

zation, Vo is the ohmic polarization, and VC is the concentration polarization. The Nernst

potential is given as

VN ¼ E0 þ
gT
2F

ln
rH2
�

ffiffiffiffiffiffiffi
rO2

p

rH2O

( )

ð10Þ

where g is the gas constant, T is the cell temperature, rH2
is the partial pressure of hydrogen,

rO2
is the partial pressure of oxygen, rH2O

is the partial pressure of water, and E0 is the revers-

ible voltage. The Simulink model of SOFC is shown in Fig 5. Important SOFC parameters are

listed in Table 3.

2.1.4 Electrolyzer. The electrolyzer dissociates water by using electrical energy to produce

hydrogen and oxygen. The electrolyzer stack has several series-connected cells. The electrical

Fig 4. Simulink model of PV array.

https://doi.org/10.1371/journal.pone.0173966.g004

Table 2. Parameters of PV array.

PV Array

Type SunPower SPR-305-WHT

Module unit 305 W @ 1 kW/m2, 25˚C

‘Number of series string 13

Number of parallel string 66

Power rating 305 × 13 × 66� 262 kW

https://doi.org/10.1371/journal.pone.0173966.t002
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efficiency of the electrolyzer is calculated as

Zelect ¼ ZIelect � ZVelect ð11Þ

where ηelect is the efficiency of the electrolyzer, ZIelect is the current efficiency, and ZVelect is the

voltage efficiency. The amount of hydrogen produced (in mol) by the electrolyzer is given as

mH2
¼
nsIelect

2F
Zelectc ð12Þ

wheremH2
is the amount of hydrogen produced, ns is the number of series cells, F is Faraday’s

constant, Ielect is the electrolyzer current, and c is a constant. The Simulink model of the elec-

trolyzer is shown in Fig 6. The parameters of the electrolyzer are listed in Table 4.

2.1.5 Battery. Lithium-ion batteries have high energy density; therefore, they are widely

used to store energy in many industrial fields [36]. Battery voltage and state-of-charge (SOC)

Fig 5. Simulink model of SOFC.

https://doi.org/10.1371/journal.pone.0173966.g005

Table 3. Parameters of SOFC.

SOFC Array

Type Bloom Energy USA ES-5700

Number of series cells 768

SOFC stack 4 kW

SOFC array 5 × 10 = 50

SOFC array power 50 × 4 kW = 200 kW

https://doi.org/10.1371/journal.pone.0173966.t003
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are the two most important parameters of a battery. Battery voltage is given as

Vbat ¼ Voc � RiIbat ð13Þ

where Vbat is the battery terminal voltage, Voc is the open-circuit voltage, Ri is the internal

resistance, and Ibat is the battery output current, which can be calculated as

Ibat ¼
Voc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
oc � 4RiP

p

2Ri
ð14Þ

The SOC of a battery is calculated by the Coulomb counting method [35]:

SOCbat ¼ SOC
ini
bat �

ð
ZIbat
q
dt ð15Þ

where SOCbat is the SOC of the battery, SOCinibat is the initial SOC of the battery, η represents the

charge or discharge mode, and q is the battery capacity (ampere hour). The estimation of SOC,

capacity and internal resistance ensures the safe, reliable and efficient operation of lithium-ion

batteries [36]. The Simulink model of the battery is shown in Fig 7. The battery parameters are

given in Table 5.

2.1.6 Supercapacitor. Supercapacitors are short-term energy storage devices with excel-

lent power density and energy efficiency [37]. The SC has two important parameters, capaci-

tance and resistance, which are assumed to be constant during charge/discharge cycles. The

energy stored in the SC has a linear relationship with the square of the capacitor voltage as fol-

lows:

Esc ¼ 0:5CV2

sc ¼ 0:5C
Psc
Isc

� �

ð16Þ

where Esc is the energy stored in the SC, C is the capacitance, Vsc is the voltage of the SC, Psc is

Fig 6. Simulink model of electrolyzer.

https://doi.org/10.1371/journal.pone.0173966.g006

Table 4. Parameters of electrolyzer.

Electrolyzer

Type QualeanQL-85000

Rated power 150 kW

Rated voltage 380 V

Number of cells in stack 30

Number of electrolyzers 6

https://doi.org/10.1371/journal.pone.0173966.t004
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the power of the SC, and Isc is the current of the SC. The SOC of the SC can be calculated as fol-

lows:

SOCsc ¼
Esc
Emax
sc

ð17Þ

where SOCsc is the SOC of the SC, and Emax
sc is the maximum energy of the SC. The SOC and

residual capacity of the SC can be estimated for reliable, resilient and safe operation [38], [39].

The voltage of the SC is given as

Vsc ¼ RsIsc þ
1

C

ð

Isc �
Esc
Rp

 !

dt þ Vini
sc ð18Þ

where Rs and Rp are equivalent series and parallel resistances, respectively, and Vini
sc is the initial

SC voltage. The Simulink model of the SC is shown in Fig 8.

The use of both a battery (high energy density) and an SC (high power density) achieve a

satisfactory driving range while meeting transient power demands at a suitable cost [40]. The

SC reduces the battery stress by delivering power to the transients during harsh accelerations

and stores regenerative energy in aggressive decelerations [39]. Important SC parameters are

given in Table 6.

Fig 7. Simulink model of battery.

https://doi.org/10.1371/journal.pone.0173966.g007

Table 5. Parameters of battery.

Battery

Type CINCO FM/BB12100T

Capacity 200 Ah

Voltage/string 12 V

Number of parallel strings 3

Number of series strings 34

Rated voltage 12 × 34� 400 V

https://doi.org/10.1371/journal.pone.0173966.t005
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2.1.7 Micro-turbine. The MT is basically a smaller version of a heavy-duty gas turbine,

deploying a radial compressor, combustor and turbine rotor with 25–300 kW installed capac-

ity. The speed and power of the MT under dynamic load conditions are controlled using PI

controllers, which work on the error signals. The fuel system involves the valve positioner and

actuator. The temperature is controlled to obtain the mechanical power at a predetermined fir-

ing temperature. The MT generates electrical power though the synchronous generator. The

turbine torque can be calculated as follows:

tturbine ¼ 1:3ðfd � 0:23Þ þ 0:5ð1 � oÞ ð19Þ

where τturbine is the torque of the turbine, fd is the fuel demand, and ω is the per unit speed of

the turbine. The net mechanical power generated by the MT is

PmtðtÞ ¼ PturbineðtÞ � PcompressorðtÞ ð20Þ

where Pmt is the net mechanical power produced by the MT, Pturbine is the power produced by

the turbine, and Pcompressor is the power consumed by the compressor. Pmt is exerted on the

Fig 8. Simulink model of SC.

https://doi.org/10.1371/journal.pone.0173966.g008

Table 6. Parameters of SC.

Supercapacitor

Type Maxwell Boost Cap BMOD0165-48.6 VUC

Capacitance 165 F

Number of series capacitors 50

Number of parallel capacitors 20

Number of module 12

Rated voltage 12 × 48:6� 584 V

https://doi.org/10.1371/journal.pone.0173966.t006
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turbine shaft to obtain the net electrical power at the output terminals of the MT as follows:

Pgenmt ðtÞ ¼ PmtðtÞZmZgZe ð21Þ

where Pgenmt is the generated electrical power of the MT, ηm is the mechanical efficiency, ηg is the

generator efficiency, and ηe is the electrical efficiency for interfacing. A split-shaft MT system

with a two-pole synchronous generator is shown in Fig 9.

The details of the MT model are shown in Fig 10. The parameters of the MT are listed in

Table 7.

3. Proposed adaptive control paradigm

3.1 Indirect adaptive MPPT control of PV system

The PV MPPT is used to move the operating voltage under varying atmospheric conditions to

maintain its position at the MPP. When the change of PV power with respect to the operating

Fig 9. Simulink model of split-shaft MT with synchronous generator.

https://doi.org/10.1371/journal.pone.0173966.g009

Fig 10. Simulink model of micro-turbine.

https://doi.org/10.1371/journal.pone.0173966.g010
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voltage is zero, the MPP is achieved as follows:

s ¼
@Ppv
@Vpv

¼
Ipv
Vpv
þ
@Ipv
@Vpv

¼ 0 ð22Þ

where s is the slope of PV power with respect to the operating voltage. Eq 22 is solved to calcu-

late the MPP voltage at each instant of time using the MPPT algorithm. A Hermite wavelet

embedded NeuroFuzzy indirect adaptive controller (HWNFIAC) is used to extract the maxi-

mum PV power. In the proposed control system, the incorporation of the Hermite wavelet

embedded NeuroFuzzy identifier (HWNFI) makes it indirect. Both the controller and identi-

fier are based on the same NeuroFuzzy structure.

3.1.1 Hermite wavelet embedded NeuroFuzzy identifier for PV. The Hermite wavelet

has a restriction-free input range, which makes it more appropriate for solving highly nonlin-

ear problems with a wide search space [41], [42]. Moreover, the series expansion of sufficient

Hermite polynomials is used to represent any signal with a high degree of accuracy. The recur-

sive relationships of Hermite polynomials and their first-order derivatives are efficiently used

in the constructive network design.

The Hermite polynomial Hm(x) of orderm is defined on the interval [−1,1] and is given

as

H0ðxÞ ¼ 1; H1ðxÞ ¼ 2x and Hmþ1ðxÞ ¼ 2xHmðxÞ � 2mHm� 1ðxÞ ð23Þ

whereHm(x) is orthogonal with respect to the weight function as

ð1

� 1

e� x2HmðxÞHnðxÞ ¼
0;

n!2n
ffiffiffi
p
p

;

m 6¼ n

m ¼ n

(

ð24Þ

Hermite wavelet ψn,m(x) is defined on the interval [0,1) by

cn;mðxÞ ¼
2k=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n!2n
ffiffiffi
p
p

r

Hmð2
kx � _nÞ;

0;

_n � 1

2k
� x �

_n � 1

2k

Otherwise

8
><

>:
ð25Þ

where k = 1, 2, � � �, is the level of resolution, n = 1, 2, � � �, 2k-1, _n ¼ 2n � 1, is the translation

parameter, andm = 1, 2, � � �,M − 1 is the order of the polynomial,M> 0.

The NeuroFuzzy network is based on a five-layer feedforward connectionist network as

shown in Fig 11.

Table 7. Parameters of micro-turbine.

Micro-turbine

Type Ingersoll Rand MT250

Rated power 200 kVA, 160 kW

Rated voltage 440 V

Rated frequency 50 Hz

https://doi.org/10.1371/journal.pone.0173966.t007
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1. Layer 1 is the input layer, which directly transmits the inputs to the second layer. The input

xð1Þi and the output yð1Þi;j for this layer are given as

xð1Þi ¼ xi;

yð1Þi;j ¼ x
ð1Þ

i ;

(
i ¼ 1; 2; � � � ; n

j ¼ 1; 2; � � � ; m
ð26Þ

2. Layer 2 is the fuzzification layer, which uses a Gaussian membership function to fuzzify the

inputs of the antecedent part as follows:

xð2Þi;j ¼ �
ðyð1Þi;j � ci;jÞ

2

s2i;j

yð2Þi;j ¼ expðxð2Þi;j Þ

8
>><

>>:

ð27Þ

where ci,j and si,j represent the center and spread of the Gaussian membership function,

respectively.

3. Layer 3 is the rule layer, which uses the product T-norm to compute the firing strength of

each rule as follows:

xð3Þi ¼
Y

yð2Þi;j

yð3Þi ¼ x
ð3Þ

i

(

ð28Þ

Fig 11. NeuroFuzzy network.

https://doi.org/10.1371/journal.pone.0173966.g011
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4. Layer 4 is the consequent layer, which presents the Hermite wavelet function in each node.

The weighted consequent value is given by

xð4Þi ¼ ci;jðxiÞ

yð4Þi ¼
X2k� 1

i¼1

wix
ð4Þ

i

8
>><

>>:

ð29Þ

5. Layer 5 is the output layer, which defuzzifies the network output as follows:

xð5Þi ¼
Xn

i¼1

yð3Þi y
ð4Þ

i

yð5Þi ¼
xð5Þi
Xn

i¼1

yð3Þi

8
>>>>>><

>>>>>>:

ð30Þ

where yð5Þi 2 ŝ; upvg
n

is the output of the Hermite wavelet embedded NeuroFuzzy network

such that ŝ is the output of the HWNFI and upv is the output of the HWNFIAC. The error

function used to adjust the HWNFI parameters is given as

eI ¼ ð̂sðtÞ � sðtÞÞ ð31Þ

where s(t) is the PV plant output, and ŝðtÞ is the HWNFI output. The gradient descent algo-

rithm is employed to adjust the linking weight wi and parameters of the Gaussian member-

ship function—i.e., ci,j and ssi,j. Thus, the generalized parameter update law is written as

xi;jðtþ 1Þ ¼ xi;jðtÞ þ ZeIðtÞ
@ ŝðtÞ
@xi;jðtÞ

ð32Þ

where ξi,j 2 {wi,j, ci,j, ssi,j}, and η is the learning rate. The differential term
@ ŝðtÞ
@xi;jðtÞ

is simplified

for respective parameters by applying the chain rule as follows:

@ ŝ
@wi;j

¼
@ŝ
@yð4Þi

@yð4Þi
@wi;j

ð33Þ

@ ŝ
@ci;j
¼

@ŝ
@yð3Þi

@yð3Þi
@yð2Þi;j

@yð2Þi;j
@ci;j

ð34Þ

@ŝ
@ssi;j

¼
@ ŝ
@yð3Þi

@yð3Þi
@yð2Þi;j

@yð2Þi;j
@ssi;j

ð35Þ
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After simplifying the above differentials for each parameter, the final updated equations are

given as follows:

wi;jðtþ 1Þ ¼ wi;jðtÞ þ ZðŝðtÞ � sðtÞÞ
yð3Þi

Xn

i¼1

yð3Þi

xð4Þi

2

6
6
6
4

3

7
7
7
5

ð36Þ

ci;jðtþ 1Þ ¼ ci;jðtÞ þ ZðŝðtÞ � sðtÞÞ
yð4Þi � ŝðtÞ
Xn

i¼1

yð3Þi

2

6
6
6
4

3

7
7
7
5
yð3Þi
ðxi � ci;jÞ
ss2i;j

ð37Þ

ssi;jðtþ 1Þ ¼ ssi;jðtÞ þ ZðŝðtÞ � sðtÞÞ
yð4Þi � ŝðtÞ
Xn

i¼1

yð3Þi

2

6
6
6
4

3

7
7
7
5
yð3Þi
ðxi � ci;jÞ

2

ss3i;j
ð38Þ

3.1.2 Hermite wavelet embedded NeuroFuzzy indirect adaptive controller for PV. The

controller uses the same Hermite wavelet embedded NeuroFuzzy structure as used by the

HWNFI. The error function to adjust the HWNFIAC parameters is given as

ecðtÞ ¼ ðrðtÞ � sðtÞÞ ð39Þ

where r(t) is the reference input. The parameters of the HWNFIAC are updated by minimizing

the following cost function:

Fc ¼
1

2
½e2

c ðtÞ þ ℏu
2

pvðtÞ� ð40Þ

where Fc is the cost function, and ℏ is the learning rate. Thus, the generalized adaptive law can

be written as

Ii;jðtþ 1Þ ¼ Ii;jðtÞ þ ℏ
@FcðtÞ
@Ii;jðtÞ

þ ℏDecðtÞ ð41Þ

where I 2 {vi,j, ki,j, σi,j} is the adaptation vector for the HWNFIAC, which can be calculated by

using the gradient descent algorithm. The term
@FcðtÞ
@Ii;jðtÞ

can be simplified using the following

equation:

@FcðtÞ
@Ii;jðtÞ

¼ ecðtÞ
@ ŝ
@upv
� ℏupv

" #
@upv
@Ii;jðtÞ

ð42Þ

The term @ŝ
@upv

is based on the HWNFI and can be calculated as follows:

@ ŝ
@upv
¼

Xn

i¼1

yð3Þi �
upv � ci;j
ss2i;j

� �

yð4Þi � ŝðtÞ þ 2
ffiffi
2

p

p
f8φj11 þ φ

j
12ð128upv � wÞg

� �

Xn

i¼1

yð3Þi

ð43Þ
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where χ is given as

w ¼ 32;

w ¼ 48;

(
0 � upv � 1=2

1=2 � upv � 1
ð44Þ

The differential term
@upvðtÞ
@Ii;jðtÞ

from Eq 42 is simplified for the respective parameters by apply-

ing the chain rule as follows:

@upv
@ni;j
¼
@upv
@yð4Þi

@yð4Þi
@ni;j

ð45Þ

@upv
@ki;j
¼
@upv
@yð3Þi

@yð3Þi
@yð2Þi;j

@yð2Þi;j
@ki;j

ð46Þ

@upv
@si;j
¼
@upv
@yð3Þi

@yð3Þi
@yð2Þi;j

@yð2Þi;j
@si;j

ð47Þ

After simplifying the above differentials for each parameter, the final update equations for

the HWNFIAC are given as follows:

ni;jðtþ 1Þ ¼ ni;jðtÞ þ ℏ ðrðtÞ � sðtÞÞ
@ ŝ
@upv
� ℏupv

 !
yð3Þi

Xn

i¼1

yð3Þi

xð4Þi

2

6
6
6
4

3

7
7
7
5

ð48Þ

ki;jðtþ 1Þ ¼ ki;jðtÞ þ ℏ ðrðtÞ � sðtÞÞ
@ ŝ
@upv
� ℏupv

 !
yð4Þi � upvðtÞ
Xn

i¼1

yð3Þi

2

6
6
6
4

3

7
7
7
5
yð3Þi
ðxi � ki;jÞ

s2
i;j

ð49Þ

where xi = ec(t) or xi = Δec(t).

si;jðtþ 1Þ ¼ si;jðtÞ þ ℏ ðrðtÞ � sðtÞÞ
@ ŝ
@upv
� ℏupv

 !
yð4Þi � upvðtÞ
Xn

i¼1

yð3Þi

2

6
6
6
4

3

7
7
7
5
yð3Þi
ðxi � ki;jÞ

2

s3
i;j

ð50Þ

3.2 Indirect adaptive control of SOFC system

To obtain the swift response from the SOFC, the input hydrogen must be controlled. The

input hydrogen is directly proportional to the SOFC stack current. Therefore, the optimal flow

of input hydrogen is obtained by controlling the SOFC stack current. The relationship for the

SOFC stack current is given by

min
H2
¼

2k
Huti

2

� �

Isofc ) Isofc ¼
Huti

2

2k

� �

min
H2

ð51Þ

whereHuti
2

is the optimal hydrogen utilization, andmin
H2

is the molar flow of input hydrogen.

Huti
2

has a typical range of 80–90%. For optimal hydrogen utilization, the SOFC current lies in
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the following limits:

0:8min
H2

2k
¼ Isofc� min � Isofc� r � Isofc� max ¼

0:9min
H2

2k
ð52Þ

where k is the constant that gives the amount of hydrogen reacting in the SOFC, and 0:8min
H2

and 0:9min
H2

are the minimum and maximum limits of molar flow of hydrogen, respectively.

Isofc−min, Isofc−r and Isofc−max are the minimum, reference and maximum SOFC currents, respec-

tively. The aforementioned limitations of hydrogen utilization and current helps the SOFC

acquire the optimal operating point of the V–I curve, because the output power of the SOFC is

directly related to its fuel consumption. The load variations suggest the different output power

levels for the SOFC. Different SOFC output power levels require appropriate variation in the

input hydrogen flowrate, which is possible by a control system. The SOFC power demand is

converted into current as follows:

Isofc� r ¼
Psofc� r
Vsofc

ð53Þ

A Hermite wavelet incorporated NeuroFuzzy indirect adaptive control is used to obtain the

swift response from the SOFC. To identify the SOFC plant, a Hermite wavelet embedded Neuro-

Fuzzy identifier is used. In both the controller and identifier, Hermite wavelets are embedded in

the consequent part of the NeuroFuzzy network. The structure of the Hermite wavelet incorpo-

rated NeuroFuzzy indirect adaptive control for SOFC is the same as that used for the PV system.

3.2.1 Hermite wavelet embedded NeuroFuzzy identifier for SOFC. The output of the

Hermite wavelet embedded NeuroFuzzy network is yð5Þi 2 fÎsofc; usofcg, where Îsofc is the output

current of the HWNFI, and usofc is the output of the controller. The error function ~eI to adjust

the HWNFI parameters is given as

~eIðtÞ ¼ ðÎsofcðtÞ � IsofcðtÞÞ ð54Þ

where Isofc(t) is the SOFC plant output, and ÎsofcðtÞ is the HWNFI output. The gradient descent

algorithm is employed to adjust the linking weight ~wi, center ~ci;j and spread ~s~si;j of the Gaussian

membership function. Therefore, the generalized parameters update law is written as

~x i;jðtþ 1Þ ¼ ~x i;jðtÞ þ ~Z~eIðtÞ
@ Î sofcðtÞ

@~x i;jðtÞ
ð55Þ

where ~x i;j 2 f~wi;j; ~ci;j; ~s~si;jg, and ~Z is the learning rate for the HWNFI. After simplifying the

differential
@Î sofcðtÞ
@~x i;jðtÞ

for each parameter, the final updated equations are as follows:

~wi;jðtþ 1Þ ¼ ~wi;jðtÞ þ ~ZðÎsofcðtÞ � IsofcðtÞÞ
yð3Þi

Xn

i¼1

yð3Þi

Wn;mðxÞ

2

6
6
6
4

3

7
7
7
5

ð56Þ

~ci;jðtþ 1Þ ¼ ~ci;jðtÞ þ ~Zð̂IsofcðtÞ � IsofcðtÞÞ
yð4Þi � ÎsofcðtÞ
Xn

i¼1

yð3Þi

2

6
6
6
4

3

7
7
7
5
yð3Þi
ðxi � ~ci;jÞ

~s~s2
i;j

ð57Þ
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~s~si;jðtþ 1Þ ¼ ~s~si;jðtÞ þ ~ZðÎsofcðtÞ � IsofcðtÞÞ
yð4Þi � ÎsofcðtÞ
Xn

i¼1

yð3Þi

2

6
6
6
4

3

7
7
7
5
yð3Þi
ðxi � ~ci;jÞ

2

~s~s3
i;j

ð58Þ

3.2.2 Hermite wavelet embedded NeuroFuzzy indirect adaptive controller for SOFC.

The HWNFIAC uses the same Hermite wavelet embedded NeuroFuzzy structure as used by

the HWNFI. The error function to adjust the HWNFIAC parameters is given as

~ecðtÞ ¼ ð~rðtÞ � IsofcðtÞÞ ð59Þ

where ~rðtÞ is the reference input. To update the parameters of the HWNFIAC, the following

cost function is minimized:

~Fc ¼
1

2
½~e2

c ðtÞ þ ~ℏu2

sofcðtÞ� ð60Þ

where ~Fc is the cost function, and ~ℏ is the learning rate for the HWNFIAC. Thus, the general-

ized adaptive law is written as

~Ii;jðtþ 1Þ ¼ ~Ii;jðtÞ þ ~ℏ
@ ~FcðtÞ
@ ~I i;jðtÞ

þ ~ℏD~ecðtÞ ð61Þ

where the adaptation vector ~I 2 ~n i;j; ~k i;j; ~si;jg
n

for the HWNFIAC can be calculated by using

the gradient descent algorithm. The term
@ ~FcðtÞ
@ ~I i;jðtÞ

can be simplified using the following equation:

@ ~FcðtÞ
@ ~I i;jðtÞ

¼ ~ecðtÞ
@Isofc
@usofc

� ℏusofc

" #
@usofc
@ ~Ii;jðtÞ

ð62Þ

The term
@ Î sofc
@usofc

is based on the HWNFI and can be calculated as follows:

@Î sofc
@usofc

¼

Xn

i¼1

yð3Þi �
usofc � ~ci;j

~s~s2i;j

� �

yð4Þi � Î sofcðtÞ þ 2
ffiffi
2

p

p
f8~φj11 þ ~φj12ð128usofc � ~wÞg

� �

Xn

i¼1

yð3Þi

ð63Þ

where ~w is given as

~w ¼ 32;

~w ¼ 48;

(
0 � usofc � 1=2

1=2 � usofc � 1
ð64Þ

The differential term
@usofcðtÞ
@ ~I i;jðtÞ

from Eq 62 is simplified for the respective parameters by apply-

ing the chain rule as follows:

@usofc
@~n i;j

¼
@usofc
@yð4Þi

@yð4Þi
@~n i;j

ð65Þ

@usofc
@~k i;j

¼
@usofc
@yð3Þi

@yð3Þi
@yð2Þi;j

@yð2Þi;j
@~ki;j

ð66Þ
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@upv
@si;j
¼
@upv
@yð3Þi

@yð3Þi
@yð2Þi;j

@yð2Þi;j
@si;j

ð67Þ

After simplifying the above differentials for each parameter, the final update equations for

the HWNFIAC are given as follows:

~n i;jðtþ 1Þ ¼ ~n i;jðtÞ þ ~ℏ ð~rðtÞ � IsofcðtÞÞ
@ Î sofc
@usofc

� ~ℏusofc

 !
yð3Þi

Xn

i¼1

yð3Þi

xð4Þi

2

6
6
6
4

3

7
7
7
5

ð68Þ

~ki;jðtþ 1Þ ¼ ~ki;jðtÞ þ ~ℏ ð~rðtÞ � IsofcðtÞÞ
@ Î sofc
@usofc

� ~ℏusofc

 !
yð4Þi � usofcðtÞ
Xn

i¼1

yð3Þi

2

6
6
6
4

3

7
7
7
5
yð3Þi
ðxi � ~ki;jÞ

~s2
i;j

ð69Þ

where xi ¼ ~ecðtÞ or xi ¼ D~ecðtÞ.

~s i;jðtþ 1Þ ¼ ~si;jðkÞ þ ~ℏ ð~rðtÞ � IsofcðtÞÞ
@ Î sofc
@usofc

� ~ℏusofc

 !
yð4Þi � usofcðtÞ
Xn

i¼1

yð3Þi

2

6
6
6
4

3

7
7
7
5
yð3Þi
ðxi � ~ki;jÞ

2

~s3
i;j

ð70Þ

Eqs 22 and 52 are solved to compute the voltage at the MPP for the PV system and the swift

response of the SOFC at each instant of time subject to the following assumptions:

Assumption 1 :

THDV < 5%; THDI < 5%;

� 0:8%ffund < ffund < þ0:8%ffund
� 6%Vrms < Vrms < þ6%Vrms

� 5%VDCbus < VDCbus < þ5%VDCbus

8
>>>><

>>>>:

ð71Þ

&

Assumption 2 :
Pgen þ Pmt � Pgrid ¼ Pload
Qgen þ Qmt � Qgrid ¼ Qload

(

ð72Þ

where THDV and THDI are the total harmonic distortion for the load voltage and current,

respectively. ffund is the fundamental frequency of the load in which only 0.8% fluctuations are

allowed to obtain the quality power. Vrms is load rms voltage, and the acceptable variation in

Vrms is up to 6%. VDC bus is the DC bus voltage variation, which should remain constant for sta-

ble operation of the HPS. Pgen and Qgen are the active and reactive generated power from the

renewable energy sources along with the backup system. Pmt and Qmt are the active and reac-

tive power of the MT. Pgrid and Qgrid are the active and reactive powers of the utility grid.

A ± symbol with grid powers shows the bidirectional flow of grid powers. Pload and Qload are

the active and reactive powers of the load. The power from renewable energy sources is calcu-

lated as follows:

Pgen ¼ Pwind þ Ppv � Psc � Pbat þ Psofc � Pelect ð73Þ

where Psc, Pbat and Pelect are the output powers of the SC, battery and electrolyzer, respectively.
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The following closed-loop control algorithm steps are used to update the parameters of the

identifiers and controllers of the PV and SOFC.

1. Initialize the linking weights and parameters of Gaussian membership functions of identifi-

ers and controllers.

2. Adjust the values of learning rates.

3. Sample the inputs of the HWNFIAC at time t.

4. Update the parameters of the HWNFI by minimizing the respective error—i.e., eI (t) and

~eIðtÞ.

5. Calculate the outputs of the controllers (upv and usofc) and apply them to the respective

plant.

6. Compute the outputs of PV and SOFC plants using control signals.

7. Calculate the adaptation errors using ŝ and Î sofc. Back propagate these errors to adjust the

parameters of HWNFIAC by minimizing Fc and ~Fc.

8. Repeat steps 2–7 until the solution converges.

The closed-loop PV and SOFC control systems are shown in Fig 12.

Fig 12. Closed-loop control systems for PV and SOFC.

https://doi.org/10.1371/journal.pone.0173966.g012
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3.3 Supervisory control

The prime obligation of the supervisory control is to ensure the continuous supply of power in

the HPS. The supervisory control calculates the reference power for the SOFC, electrolyzer,

battery, SC, MT and grid based on the deduction of the load power from the wind and PV gen-

erated power. The flowchart of supervisory control is shown in Fig 13. In the flowchart, Pwind,
Ppv, Psofc, Pelect, Pbat, Psc, Pgrid and Pmt are the wind, PV, SOFC, electrolyzer, battery, SC, grid

and MT power, respectively. SOCbat and SOCsc are the SOCs of the battery and SC, respec-

tively. Supervisory control requires several decisions for the management and use of power.

The decision factor of the supervisory control depends upon the load power and the wind and

PV generated power. The SOFC, battery, SC, MT and grid are capable of providing the

required power. All steps for the operation of supervisory control are explained below:

1. Compare the wind and PV generated power with the load. If the wind and PV generated

power is greater than the load, go to step 2; otherwise, go to step 6.

Fig 13. HPS supervisory control flowchart.

https://doi.org/10.1371/journal.pone.0173966.g013
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2. If the SOC of the battery is less than 90%, the battery is in charge mode. If the battery is

charged and the generation (wind and PV power) is greater than the load, go to step 3; oth-

erwise, go to step 1.

3. If the SOC of the SC is less than 90%, the SC is in charge mode. If the SC is charged and

the generation (wind and PV power) is greater than the load, go to step 4; otherwise, go

to step 1.

4. If both the battery and SC are fully charged, the excess power is used by the electrolyzer to

produce the hydrogen gas. If the hydrogen tank is full and the generation (wind and PV

power) is greater than the load, go to step 5; otherwise, go to step 1.

5. The excess power is given to the grid; go to step 1.

6. If the wind and PV generated power is less than the load power and the SOC of the battery

is greater than 20%, the battery is in discharge mode. If the battery is discharged and defi-

cient power exists, go to step 7; otherwise, go to step 1.

7. If the SOC of the SC is greater than 20%, the SC is in discharge mode. If the SC is dis-

charged and deficient power exists, go to step 8; otherwise, go to step 1.

8. If both the battery and SC are fully discharged, the SOFC delivers the power to the load. If

the load is not met, go to step 9. Otherwise, go to step 1.

9. The grid delivers the remaining deficient power if it is available or during off-peak hours;

otherwise, the MT delivers the remaining deficient power. Go to step 1.

4. Results and discussions

The performance of the stated HPS and proposed controllers is evaluated in MATLAB Simu-

link R2014b. In an 11 kV grid-connected HPS, wind generation of 100 kW, PV of 260 kW,

SOFC of 200 kW, electrolyzer of 150 kW, and MT of 200 kVA along with backup sources (200

Ah battery and 165 F Super-Capacitor) are modeled for the dynamic residential load. Defense

Housing Authority (DHA), Islamabad, Pakistan, is taken as a case study. The hourly basis

wind speed (m/s), irradiance (W/m2) and ambient temperature (˚C) levels are recorded by the

Pakistan Meteorological Department (PMD) as shown in Figs 14 and 15. The base wind speed

is taken as 12 m/s, whereas wind speed varies between 3 and 13 m/s as shown in Fig 14. A max-

imum wind speed of 12.4 m/s is achieved between 4 and 5 h, and the minimum wind speed of

3.1 m/s is captured during 2–3 and 11–13 h.

The ambient temperature and solar irradiance used for the case study are shown in Fig 15.

At nighttime, the low temperature is recorded. During 0–6 h, the temperature continues to

decrease, and a minimum temperature of 27˚C is obtained during 5–6 h. After 6 h, the temper-

ature continues to increase, and a maximum temperature of 41˚C is attained during 14–18 h.

After 18 h, the temperature again gradually decreases until 23 h. The irradiance level varies

over the 24 h cycle depending upon the appearance of the sun. In the absence of the sun—i.e.,

during 0–5.5 h and 19–24 h—the irradiance level is zero. After 5.5 h, the irradiance level

increases, and a maximum irradiance level of 1058 W/m2 is obtained during 11–13 h.

The HWNFIAC for the PV system tracks the MPP by keeping the slope close to zero. To

analyze the performance of the HWNFIAC, a PI controller is also used to track the MPP of the

PV system. It is clear from Fig 16 that under rapid change of atmospheric conditions, the

HWNFIAC achieves the MPP quickly. The PI controller also tracks the PV MPP, but when the

sudden change in atmospheric conditions occurs, the PI controller loses its control for an
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instant of time, which results in spikes—e.g., at 0, 5.5, 6, 18.5 and 19 h. The accuracy and stabil-

ity of the PV HWNFIAC is better than the PI controller.

The HWNFIAC for the SOFC is used to obtain a swift response by controlling the molar

flow of input hydrogen. The power drawn from the SOFC is proportional to the molar flow of

Fig 14. Wind speed.

https://doi.org/10.1371/journal.pone.0173966.g014

Fig 15. Temperature and irradiance levels.

https://doi.org/10.1371/journal.pone.0173966.g015
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hydrogen. In the case of load variations, after a short transient period, the HWNFIAC quickly

achieves the stable condition compared to the PI controller as shown in Fig 17. The PI control-

ler takes time and fluctuates more for load variations. The HWNFIAC provides a better con-

trol than PI.

Fig 16. PV MPPT error.

https://doi.org/10.1371/journal.pone.0173966.g016

Fig 17. SOFC hydrogen utilization error.

https://doi.org/10.1371/journal.pone.0173966.g017
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The generated and consumed power of the stated HPS is shown in Fig 18. The power gener-

ated from renewable energy sources—i.e., wind and PV—is initially used to satisfy the load. In

the absence of renewable power, other sources of HPS participate accordingly to satisfy the

load. During nighttime, i.e.—0–2.19 h—the load varies between 54 and 83 kW. For this time

interval, the wind power fluctuates between 31 and 63 kW, and the PV power is completely

unavailable. Initially, the battery and SC are considered fully charged, so these two backup

sources deliver the power to the load. The grid delivers the rest of the power up to 10 kW to

the load. The load is met by wind, battery, SC and grid power, so there is no need to take

power from the SOFC and MT. Any excess power in the system is utilized by the electrolyzer

to keep the system stable. For the time interval 2.1–5.5 h, the load increases to 83–115 kW.

During this time interval, the wind power decreases to 31–24 kW for the interval 2.1–3 h and

then increases to 24–29.7 kW for the interval 3–5 h. Between 5 and 5.5 h, the wind power

again decreases to 29.7–26.8 kW. PV power is still inaccessible for this interval. The battery

and SC remain in discharge mode during this time interval. The grid delivers a maximum of

15 kW between 4 and 5.5 h, and the SOFC delivers a maximum of 7.3 kW between 5 and 5.5 h.

The MT is kept off during this time interval and the electrolyzer utilizes the surplus power

from the system.

During the time interval 5.5–10 h, the load increases to 115–200 kW. For this time interval,

the wind power varies, a minimum wind power of 15 kW is captured at t = 6.7 h, and a maxi-

mum wind power of 28 kW is acquired at t = 9.5 h. PV power is now available, and a maxi-

mum of 246 kW is obtained. The battery is in discharge mode until 6.2 h and then remains in

charge mode for 6.2–10 h. The SC is in discharge mode for 5.5–6.5 h, but between 6.5 and 7 h,

the SC neither utilizes nor delivers the power. Between 7 and 8.5 h, the SC is in charge mode

and then remains in discharge mode for 8.5–10 h. The grid delivers a maximum of 18 kW

between 5.5 and 8 h, but the grid takes a maximum of 20 kW during 9–10 h. During this time

interval, the SOFC and MT are kept off, because the load is satisfied. The electrolyzer takes all

excess power of the system.

Fig 18. Generated and consumed power.

https://doi.org/10.1371/journal.pone.0173966.g018
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During 10–19 h, fluctuating wind gives a maximum of 23 kW at t = 18.79 h. The PV system

delivers its maximum power of 253 kW between 11 and 13 h, and then PV power starts

decreasing and becomes zero again at t = 19 h. After t = 18 h, the battery delivers the power.

The SC remains in charge mode between 10.5 and 17.5 h and then starts discharging after 17.5

h. The SOFC starts delivering the power after t = 18.5 h. During this time interval, the grid

takes a maximum of 20 kW. Between 12 and 15.25 h, the MT delivers approximately 15 kW of

power. The electrolyzer utilizes excess power. For 19–24 h, the wind power decreases to 21–2.5

kW. PV power is again unavailable. The battery remains in discharge mode and delivers 30

kW of power. The SC delivers the power until t = 19.3 h only. The SOFC delivers maximum

power of 140 kW. The MT delivers a maximum of 25 kW between 19 and 23.25 h. The grid

takes a maximum of 25 kW power until 22.25 h and then delivers 10 kW of power during

23.25–24 h. The electrolyzer utilizes excess power.

The reference power shown in Fig 19 is the load required power. At each hour, the load

required power is essentially satisfied by the power extracted from the generating sources used

in the HPS. The zoomed Figs of active and reactive load show that although the PI controller

reduces the steady state error, it increases the overshoot, undershoot and settling time com-

pared to the HWNFIAC as mentioned in Table 8.

The PV generated power is shown in Fig 20. The PV power is unavailable for 0–5.5 h and

19–24 h—i.e., at nighttime. After t = 5.5 h, the PV power continues to increase until t = 13 h,

Fig 19. Load active and reactive power.

https://doi.org/10.1371/journal.pone.0173966.g019
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where maximum power of 254 kW is captured and then starts decreasing. Fig 20 shows the PV

power captured with the HWNFIAC, PI and without any control. The HWNFIAC tracks the

reference power with minimum overshoot, undershoot, steady state error and settling time

compared to PI and without control as given in Table 8. At t = 12 h, the peak reference PV

power is 254 kW, whereas the HWNFIAC acquires 253.6 kW; PI achieves 242 kW and without

control 234 kW. According to Table 8, although the overshoot and undershoot in the case

without control are less than with the PI control, the steady-state error is much higher than

with PI control. In the zoomed sub-figures depicted in Fig 20, the overshoot, undershoot and

steady-state error with the HWNFIAC, with the PI and without control are clearly shown.

The reference power is the power required by the SOFC as shown in Fig 21. The reference

power is tracked by both controllers—i.e., HWNFIAC and PI. Fig 21 shows that the

Table 8. Comparative analysis of controllers.

Photovoltaic Max. Power (kW) Overshoot Undershoot Steady State Error (kW) Settling Time (s)

PV with No Control 234 0% -6% 20 0.29

PV with PI 242 6% -18% 12 0.03

PV with HWNFIAC 253.6 0% -2% 0.4 0.01

SOFC with PI 140.4 0% -12% 3 0.31

SOFC with HWNFIAC 141.9 0% -7% 1.5 0.13

Load (kW) with PI 210.9 3% -22% -1 0.19

Load (kW) with HWNFIAC 210 1% -18% 0 0.1

Load (kVAR) with PI 158 2% -8% -700 0.139

Load (kVAR) with HNFIAC 157 1% -4% 0 0.119

Max. Deviation Vrms Frequency VTHDs ITHDs

PI 1.53% 0.1748% 4.084% 3.79%

HWNFIAC 1.32% 0.1443% 3.85% 3.89%

https://doi.org/10.1371/journal.pone.0173966.t008

Fig 20. PV output power.

https://doi.org/10.1371/journal.pone.0173966.g020
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HWNFIAC tracks the reference power more quickly compared to the PI controller. The

undershoot, steady-state error and settling time of the HWNFIAC are less than with the PI

controller as mentioned in Table 8. The zoomed Figs of undershoot and steady-state error are

also presented in Fig 21.

In the HPS, power quality is the key issue to be addressed. Power quality evaluates the fit-

ness of electric power to consumer devices and is measured in terms of voltage regulation, fre-

quency stabilization and total harmonic distortion. To ensure power quality, assumptions are

applied according to the IEEE 1547 standard [43]. In Fig 22, the percentage change in load

RMS voltage and fundamental frequency are shown. The percentage change in both the load

RMS voltage and fundamental frequency are in their acceptable limits for both HWNFIA and

PI controllers, which ensures the system stability and quality power. The maximum deviation

of load RMS voltage with the HWNFIAC and PI are 1.32% and 1.53%, respectively. Similarly,

the maximum deviation of the load frequency with the HWNFIAC and PI are 0.1443% and

0.1748%, respectively, as mentioned in Table 8.

In Fig 23, the THD for voltage and current are shown, which are in their standard limits for

both HWNFIAC and PI controllers. The maximum deviation of voltage THD with

HWNFIAC and PI are 3.85% and 4.084%, respectively. Similarly, the maximum deviation of

current THD with HWNFIAC and PI are 3.89% and 3.79%, respectively. It is clear from

Table 8 that the maximum deviation of RMS voltage, fundamental frequency and voltage

THD are less in the case of the HWNFIAC compared to the PI controller.

5. Conclusions

This paper presents a grid-connected HPS consisting of wind turbine, PV, SOFC, electrolyzer,

battery storage system, SC and MT generating sources to satisfy a dynamic residential load.

The dynamic models of all components of the HPS are discussed. In the HPS, the continuous

and sustainable power supply to the load is achieved by supervisory control. The results prove

that power is well managed in the HPS under rapid change of atmospheric and dynamic load

conditions.

Fig 21. SOFC output power.

https://doi.org/10.1371/journal.pone.0173966.g021
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The main contribution of this research work is to extract the maximum power from the PV

system and obtain a swift response of the SOFC. Two Hermite wavelet embedded NeuroFuzzy

indirect adaptive control systems are implemented to track the MPPT of the PV and swift

response of the SOFC. The HWNFIAC for the PV system quickly tracks the MPP, and the

HWNFIAC for the SOFC accurately achieves the swift response of the SOFC. To track the

MPPT of the PV system and obtain the swift response of the SOFC, Hermite wavelet embed-

ded NeuroFuzzy indirect adaptive control systems have higher precision than conventional PI

control systems in terms of overshoot, undershoot, steady-state error and settling time. Her-

mite wavelet embedded NeuroFuzzy indirect adaptive control systems for both PV and SOFC

have smaller overshoot, undershoot, steady-state error and settling time compared to conven-

tional PI controllers.

Future work

The future work is to implement the Chebyshev wavelet-based NeuroFuzzy indirect adaptive

control system to track the MPP of the wind generation system.

Fig 22. Percentage change in load voltage and frequency.

https://doi.org/10.1371/journal.pone.0173966.g022
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